Exercise 69

Suppose f is differentiable on \mathbb{R}. Let $F(x)=f\left(e^{x}\right)$ and $G(x)=e^{f(x)}$. Find expressions for (a) $F^{\prime}(x)$ and (b) $G^{\prime}(x)$.

Solution

Take the derivative of $F(x)$.

$$
\begin{aligned}
F^{\prime}(x) & =\frac{d}{d x}\left[f\left(e^{x}\right)\right] \\
& =f^{\prime}\left(e^{x}\right) \cdot \frac{d}{d x}\left(e^{x}\right) \\
& =f^{\prime}\left(e^{x}\right) \cdot\left(e^{x}\right)
\end{aligned}
$$

Take the derivative of $G(x)$.

$$
\begin{aligned}
G^{\prime}(x) & =\frac{d}{d x}\left[e^{f(x)}\right] \\
& =e^{f(x)} \cdot \frac{d}{d x}[f(x)] \\
& =e^{f(x)} \cdot f^{\prime}(x)
\end{aligned}
$$

